Přípravné operace před galvanickým pokovením
Rubrika: Povrchová ochrana
Vývojový trend v oblasti povrchových úprav vykazuje za poslední několikaleté období značný nárůst povrchové úpravy zinkováním. K nárůstu dochází v celé oblasti zinkovacích technologií počínaje žárovým a konče galvanickým. Hnacím motorem hlavně v oblasti galvanického zinkování je automobilový průmysl. Je realizována řada nových investic, kde konečnou povrchovou úpravou je galvanický zinek nebo jeho slitiny, převážně zinek – nikl.
Požadavek na vysokou korozní odolnost takto povrchově upravených dílů s sebou přináší i nové druhy kvalitních pasivací a utěsnění. Nezanedbatelné jsou i požadavky na chromáty s vysokou korozní odolností bez obsahu šestivalentního chromu, odborně nazývané „tlustovrstvá“ pasivace. Dalším důležitým stimulem nárůstu zinkování je jeho relativně nižší cena oproti ostatním povrchovým úpravám a stále vyšší dosahovaná kvalita. Požadavek na zvýšenou kvalitu, nové typy chromátů a utěsnění, které vyžadují při aplikaci zvýšenou teplotu, však přináší i zvýšení provozních nákladů. Nemalý podíl na provozních nákladech činí v řadě provozů náklady na opravu vadné povrchové úpravy.
Jak je známo ze zveřejňovaných statistik a provozních zkušeností, 50 až 70% zmetků připadá na nedostatečnou nebo špatně provedenou předúpravu povrchů před vlastním galvanickým pokovením.
Jedná se o operace:
-
chemické odmaštění,
-
moření,
-
elektrolytické odmaštění.
V tomto příspěvku je podrobněji rozebráno moření.
MOŘENÍ
Z pohledu předúpravných operací patří moření mezi klíčové operace. Náročnost moření je dána jednak rozdílným stupněm naoxidování povrchu, jednak velmi širokým sortimentem zinkovaných dílů. Procesem moření se odstraňují z povrchu materiálu hlavně oxidační zplodiny a některé další nečistoty. Z oxidů se zásadně jedná o FeO, Fe2O3 a Fe3O4. Nejlépe se rozpouští FeO, nejhůře Fe2O3. Při moření dochází současně i k rozpouštění čistého železa, které se rozpouští rychleji než oxidy, za současného vývoje vodíku.
Chemicky je možné tento proces popsat rovnicemi:
Fe + 2H+ = Fe2+ + H2
FeO + 2H+ = Fe2+ + H2O
Fe3O4 + 8H+ = Fe2+ + 2Fe3+ + 4H2O
Fe2O3 + 6H+ = 2Fe3+ + 3H2O
2Fe3+ + Fe = 3Fe2+
2Fe3+ + H2 = 2Fe2+ + 2H+
Pro libovolnou kyselinu a směs okují lze rozpouštění popsat obecnou rovnicí:
(xFeO + yFe2O3) + 2 (x + 3y)H+ = xFe2+ + 2yFe3+ + (x + 3y)H2O,
kde x a y mohou nabývat libovolných kladných hodnot včetně nuly. V současné době se minimálně 90% mořených materiálů moří v anorganických kyselinách, z toho nejvíce v kyselině chlorovodíkové, méně v kyselině sírové a zanedbatelně v kyselině fosforečné nebo ve směsi kyselin. Volbu druhu mořicí kyseliny provádíme podle typu mořeného materiálu, stupně oxidace jeho povrchu a podle technologie, která za mořením následuje. Každá z mořicích kyselin má své přednosti a nedostatky. Při moření v kyselině chlorovodíkové je výhodou, že lze získat pěkný, hladký a téměř lesklý povrch, moření lze provádět s dostatečnou účinností již při běžné teplotě okolo 20°C při nízkém naleptávání základního materiálu. Zvýšením mořící teploty o 10°C se zvýší rychlost moření o 100% a naopak. Současně při rozpouštění oxidů železa dochází i k rozpouštění čistého kovu za vzniku vodíku. Mimo naleptávání vlastního povrchu má i vzniklý vodík negativní vliv na následující technologie povrchové úpravy. Část vodíku má snahu pronikat do kovu, zhoršovat jeho mechanické vlastnosti, které se souhrnně nazývají vodíková křehkost.
PŘÍDAVEK INHIBITORŮ A POZNATKY
K zamezení tohoto vlivu jsou do mořících lázní přidávány látky, které se sorbují na čistý povrch železa, tento povrch blokují, a tím výrazně snižují jeho další napadání čili další rozpouštění železa. Tyto látky jsou nazývány inhibitory rozpouštění. Dnes existuje celá řada těchto přípravků. Obyčejně se nejedná o chemické individuum, nýbrž o směs látek, vzájemně se doplňujících v inhibičních schopnostech za různých podmínek. Často se do mořicích lázní při aplikaci inhibitorů přidává ještě malé množství smáčedla, které jednak doodmastí mořený díl, jednak sníží povrchové napětí mořící lázně a umožní její rychlejší a dokonalejší odkapání. Tyto přípravky jsou např. dodávány pod obchodním označením Inhibitor P 29, Tenzogal P 30. Zvýšení rychlosti moření až o 30% lze dosáhnout mícháním mořící lázně míchacími injektory. Jejich instalace je jednoduchá a provoz nenáročný.
Dosavadní vývoj ukazuje, že:
-
inhibiční účinek inhibitoru (Inhibitor P 29) se projevuje při moření železných kovů již v mořících časech okolo pěti minut. Jeho účinnost roste s narůstající dobou moření. V případě moření za zvýšené teploty a míchání se inhibitor uplatňuje ihned,
-
vliv inhibitoru se uplatňuje více tam, kde je povrch materiálu nepravidelně zoxidován a kde je čistý povrch vystaven působení mořících lázní,
-
inhibitor působí efektivně již při koncentraci 0,75%. Jeho účinek však roste s rostoucí koncentrací. Ekonomicky jsou zajímavé koncentrace inhibitoru do 3%,
-
se zvyšující se teplotou roste i inhibiční účinek inhibitoru,
-
aplikací inhibitoru dojde ke snížení napadání a naleptávání (přemoření) povrchu výrobku, k výraznému snížení vývoje vodíku a tím i zamezení jeho negativních vlivů na materiál včetně snížení úniku kyselého aerosolu do ovzduší, úspoře mořicí kyseliny a snížení nákladů na likvidaci mořicích lázní.
Celý nezkrácený článek si můžete přečíst v říjnovém čísle 5/2005 časopisu KONSTRUKCE.