KONSTRUKCE Media, s. r. o.Com4In Group
ISSN 1803-8433
English - Google Translate Česky - Překladač Google French - Google Translate Italian - Google Translate German - Google Translate Polish - Google Translate Spanish - Google Translate Swedish - Google Translate   |   Přihlásit se   
Nacházíte se:  Úvod    Projektování    Softwarové korozní analýzy

Softwarové korozní analýzy

Publikováno: 5.6.2013
Rubrika: Projektování

Koroze vždy patřila k přirozeným součástem dějů, probíhajících v přírodě. V oblasti průmyslu představuje ve větší či menší míře komplikace, které je nutné řešit. Článek se zabývá zcela novým přístupem k řešení korozní problematiky. Jsou zde uvedeny možnosti softwarové simulace korozního poškození, které umožňuje predikovat případná kritická místa a definovat míru poškození konkrétního typu konstrukce. Na základě aplikace elektrochemických jevů na definované konstrukční prvky je možné sledovat a odhadnout míru degradace materiálu, druh korozního napadení a rozsah poškození. Informace získané na základě softwarové analýzy nabízí pohled na průběh koroze materiálu a povrchových úprav a její změnu v čase.

Koroze konstrukčních materiálů je proces, který nelze zcela vyloučit, protože se jedná o děj, který materiály vrací do jejich termodynamicky stabilnější formy. Důsledky korozního poškození jsou velmi negativní – ekonomické ztráty, bezpečnostní rizika, problémy technického rázu jako vliv na životnost či prostoje při údržbě – je tudíž snahou dopady koroze v maximální možné míře omezit. K omezení korozního poškození může dojít dvěma možnými přístupy. Prvním z nich je kontrola, zahrnující pravidelné zjišťování stavu konstrukce a následnou údržbu nebo výměnu. Druhým přístupem je prevence. Představuje včlenění protikorozních opatření do konstrukce již při jejím vzniku. V ideálním případě bude probíhat včlenění protikorozních opatření již během návrhu konstrukce.

Koroze má mnoho forem. Dle mechanismu je specifickou formou koroze galvanická, která může způsobit poškození často i na velmi neočekávaných místech. Její hnací silou je elektrochemická rozdílnost kovů. Mezi dvěma kovy ponořenými do elektrolytu vzniká potenciálový rozdíl. Jsou-li tyto dva kovy navíc vodivě propojeny, způsobuje rozdíl potenciálu vznik proudu, jehož následkem je rozpouštění elektrochemicky méně ušlechtilého kovu. Jev může mít své využití jako katodická ochrana ve formě obětované anody nebo ochranných kovových povlaků anodických vůči základnímu materiálu. Zejména při kombinování různých materiálů bez dostatečného přezkoumání korozního hlediska však způsobuje problémy. S rostoucím využitím kompozitních materiálů je třeba upozornit také na uhlíkové kompozity, kdy se kompozit chová v důsledku přítomnosti uhlíku jako elektrochemicky ušlechtilý kov. Přítomnost uhlíku může urychlovat korozi ostatních materiálů [1]. Dnešní praxe v určování rizik galvanické koroze je založená na tabelovaných hodnotách korozních potenciálů pro použité kovy v předpokládaném korozním prostředí (rozsáhlé databáze jsou zpracované zejména pro mořskou vodu) a na porovnání exponovaných ploch různých kovů, které jsou v kontaktu. Je-li však geometrie struktury složitější, nebo při kombinaci více kovů se odhad korozního chování struktury stále více stává věcí zkušenosti. V následujícím textu je popsána možnost řešit vliv galvanické koroze softwarovou analýzou.

SIMULACE GALVANICKÉ KOROZE
Základní parametry definující sledovaný korozní systém jsou definovány pomocí okrajových podmínek. Jednoduché schéma zobrazující tyto vstupní parametry je uvedeno na obr. 1. Při simulaci galvanické koroze se z fyzikálního hlediska řeší rovnice zachování náboje v objemu elektrolytu. Okrajové podmínky pro rozhraní kov/elektrolyt jsou popsány polarizačními křivkami daného materiálu v přítomném elektrolytu, tedy závislostí potenciálu kovu vůči elektrolytu na proudové hustotě protékající rozhraním kov/elektrolyt. Průběh polarizační křivky je dán jak termodynamicky hodnotou potenciálu v bezproudovém stavu, tak kinetikou elektrodových reakcí. Řízení elektrodových reakcí může být difúzní nebo aktivační. Mechanismy polarizace jsou značně komplexní. Korozní simulační programy je většinou neřeší a polarizační křivky musí být zadány jako vstupní data simulace.

Software BEASY Corrosion Manager, který je navržen pro zvláštní případ galvanické koroze v tenké vrstvě elektrolytu, umožňuje provádění simulací a predikci průběhu korozního poškození, které lze použít jako alternativu k atmosférické korozi. Označení tenká vrstva znamená vrstvu řádově tenčí než je charakteristický rozměr řešené struktury. Předpoklad tenké vrstvy umožňuje matematické zjednodušení při řešení rovnice zachování náboje. Ve směru kolmém k rozhraní kov/elektrolyt je možné považovat elektrický potenciál v elektrolytu za konstantní. Je tak možné řešit dvourozměrný problém vrstvy elektrolytu a okrajové podmínky vyjádřené polarizační křivkou se v rovnici objeví jako zdrojový člen. Přínosem je značné snížení výpočetních nároků programu.

Program je navržen jako provozní software, který je možné včlenit do procesu navrhování a řešit s jeho pomocí korozní hledisko již při návrhu konstrukce. Vstupy pro vytvoření matematického modelu představují:

  • geometrie řešené struktury – program používá univerzální pre- a post-procesor GiD, import geometrie je možný v běžných formátech jako IGES, DXF, Parasolid ad.
  • materiálové složení – základním prvkem pro simulaci koroze jsou povrchy, veškeré povrchy struktury exponované korozivnímu prostředí musí mít přiřazeno materiálové složení,
  • tloušťka a vodivost filmu elektrolytu,
  • vlastnosti případných povlaků – povlaky, typicky nátěry, se v modelu charakterizují ohmickým odporem a podílem obnažené plochy základního materiálu. Druhý parametr umožňuje namodelovat i poškozený povlak,
  • polarizační křivky – pro každý materiál přítomný ve struktuře, naměřené za podmínek blízkých reálnému korozivnímu prostředí.

Vlastní simulace korozního napadení probíhá řešením rovnice zachování náboje v objemu elektrolytu za již zmíněných zjednodušujících předpokladů.

Na obr. 2 je pro ilustraci zobrazen výsledek simulace korozního poškození na šroubovém spojení dvou plechů.

Aby bylo možné ověřit, zda výsledky získané z korozního softwaru odpovídají skutečnosti, byly provedeny srovnávací korozní experimenty v korozní komoře, a dále v klimatické komoře. Vyhodnocení experimentů pro srovnání s nasimulovanými hodnotami bylo prováděno pomocí hmotnostních úbytků a pomocí měření zaleptaného profilu (profiloměr T1000 wave). Zejména při zkouškách v korozních komorách je třeba separovat vliv rovnoměrné koroze od vlivu galvanické koroze použitím srovnávacích vzorků materiálu umístěných izolovaně v komoře. Srovnávací experimenty byly prováděny na modelu korozní dvojice kovů, kdy jeden z materiálů působil jako katoda a druhý jako anoda. Na obr. 3 (a) je zobrazen model korozní dvojice použitý při simulování a na obr. 3 (b) je vidět namodelované rozložení korozní rychlosti na dvojici ocel tř. 11/hliník.

Na obr. 4 je přímé porovnání experimentálně získaného a namodelovaného průběhu zaleptání vlivem galvanické koroze v závislosti na vzdálenosti od rozhraní. Jedná se o anodu korozní dvojice hliník/ocel tř. 11, kterou je hliníková deska.. Namodelované průběhy jsou dva a to pro tloušťku filmu elektrolytu 1 mm a 0,1 mm. Namodelovaná poloha maximálního působení galvanické koroze je posunuta řádově o desetiny milimetru od rozhraní materiálů směrem na plochu anody. Experimentální a namodelované hodnoty se řádově liší v maximální hodnotě zaleptání. V dosahu galvanické koroze od rozhraní je shoda modelu a experimentu lepší.

Na obr. 5 a 6 jsou vidět výsledky simulace na reálné struktuře konstrukčního prvku letadla. Z analýzy reálného prvku je zřejmé, že zde probíhá galvanická koroze na kadmiovaném spojovacím materiálu. Oblast maximální korozní rychlosti je lokalizována na povrchu šroubu mezi táhly a válcem, respektive v okolí jednotlivých šroubových spojení. Na hlavě šroubu a na podložce jsou korozní rychlosti o řád menší.

ZÁVĚR
Pomocí softwarových analýz je VZLÚ, a. s. v současnosti schopen řešit rozbor korozního hlediska konstrukce a identifikaci kritických míst za předpokladu atmosférické koroze, kdy se používají polarizační křivky naměřené v tenké vrstvě vody. Pro simulaci koroze v jiných korozivních prostředích, například za předpokladu zatékání vlhkosti, případně za přítomnosti výrazněji znečištěných kondenzátů a elektrolytů je vždy třeba nejprve proměřit polarizační křivky použitých materiálů v prostředí daného elektrolytu.

LITERATURA:
[1] V. S. Raja a kol.: Electrochemical impedance behavior of graphite-dispersed electrically conducting acrylic coating on AZ31 magnesium alloy in 3.5 wt% NaCl solution, Progress in Organic Coatings 67 (2010) 12-19
[2] A. P. Yadav a kol.: Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte, Electrochimica Acta 52 (2007) 2411-2422
[3] S. Palani a kol.: Modeling approach for galvanic corrosion protection of multimaterial aircraft structures, (2011) available online: http://www.beasy.com/news/pdfs/Aircraft_ Structure_Corrosion_DOD_2011.pdf 

Software Corrosion Analyses
Corrosion has always been a natural part of processes taking place in nature. Nonetheless, in the field of industry it represents to a greater or lesser extent a complication which has to be solved. The text focuses on completely new approach to solution of an issue of corrosion. It discusses possibilities of software simulation of corrosion damage enabling prediction of possible critical places and definition of an extent of damage on a particular type of structure. On a basis of application of electrochemical phenomena on defined structural elements, it is possible to monitor and estimate an extent of material degradation, type of corrosion and extent of damage. Information acquired from a software analysis provides a view on a course of corrosion of a material and surface treatments and its modification as time moves on.

Bookmark
Ohodnoďte článek:

Fotogalerie
Obr. 1 – Schéma pro okrajové podmínkyObr. 2 – Rozložení korozní rychlosti na konstrukčním detailu, kritické hodnoty se vyskytují v okolí šroubového spojeníObr. 3 – Model korozní dvojice vytvořený v BEASY CM: (a) je zobrazena diskretizační síť, ve výřezu je zeleně zobrazen pruh izolantu mezi oběma deskami; (b) namodelované rozložení korozní rychlosti na dvojici ocel tř. 11 (vlevo) / hliník (vpravo)Obr. 4 – Namodelovaný průběh zaleptání na anodě článku hliník/ocel tř. 11 pro vrstvu elektrolytu tloušťky 1 mm a 0,1 mm; na vloženém grafu je zobrazen experimentálně získaný průběh zaleptání.Obr. 5 – Šroubové spojení jiných dvou prvkůObr. 6 – Příklad typického šroubového spojení, materiály – šroub, matice a podložka = kadmiovaný povrch; spojované materiály = ocel 11 a hliník.

NEJčtenější souvisejicí články (v posledních 30-ti dnech)

Vystužovanie stĺpov a stien monolitických železobetónových nosných konštrukcií staviebVystužovanie stĺpov a stien monolitických železobetónových nosných konštrukcií stavieb (263x)
Monolitické železobetónové nosné konštrukcie stavieb majú veľa výhod. Vyžaduje sa však pri ich navrhovaní dodržiavať nie...
Příhradové vazníky z dutých profilů jakosti S355 a S420Příhradové vazníky z dutých profilů jakosti S355 a S420 (70x)
Ekonomika stavebního díla je dnes velmi důležitým parametrem. Svařované příhradové střešní vazníky vždy byly a i v souča...
Oceli s vyšší pevností jsou předpokladem udržení konkurenceschopnosti ocelových konstrukcí (69x)
Vývoj v oblasti výroby konstrukčních ocelí směřuje všeobecně k významnému zvyšování jejich pevnosti. I na našem trhu jso...

NEJlépe hodnocené související články

„Pilotní projekt nasazení BIM naplno poukázal nutnost komplexní změny přístupu všech na staveništi. BIM prostě není jen 3D model…,“„Pilotní projekt nasazení BIM naplno poukázal nutnost komplexní změny přístupu všech na staveništi. BIM prostě není jen 3D model…,“ (5 b.)
uvedl v rozhovoru pro časopis KONSTRUKCE vedoucí oddělení rozvoje Statutárního města Třinec Ing. Daniel Martynek....
Od určité výšky haly byla z důvodu urychlení výstavby uplatněna ocelová konstrukceOd určité výšky haly byla z důvodu urychlení výstavby uplatněna ocelová konstrukce (5 b.)
Společnost Fatra v červnu dokončila výstavbu Nové válcovny za 1,4 miliardy korun, silně pokročila v oblasti montáže výro...
Rozšírenie výrobného areálu ZKW SLOVAKIA KRUŠOVCERozšírenie výrobného areálu ZKW SLOVAKIA KRUŠOVCE (5 b.)
STAT‑KON úspešne dokončil projekt rozšírenia výstavby – expanzia závodu ZKW Krušovce s náročným technologickovýrobným pr...

NEJdiskutovanější související články

Trimaran – komerční a kongresové centrum v Praze na PankráciTrimaran – komerční a kongresové centrum v Praze na Pankráci (1x)
Předmětem článku je projekt, výroba, montáž a předpínání ocelové superkonstrukce nového objektu Trimaran v Praze na Pank...
Normalizace v oboru ocelových konstrukcí (1x)
Tento příspěvek navazuje na informaci o současném stavu a výhledech technické normalizace z minulé konference [1]....
Výpočetní modely styčníků ocelových konstrukcíVýpočetní modely styčníků ocelových konstrukcí (1x)
Při návrhu ocelové konstrukce využije statik nejčastěji prutové prvky, ale na konstrukci je řada míst, kde prutová teori...

Server Vodohospodářské stavby

Rekonstrukce Vodního díla Nechranice

Rekonstrukce Vodního díla Nechranice