Kotvení sloupu zabetonovanou deskou
Rubrika: Projektování
Kotvení ocelových a ocelobetonových sloupů k základům je jedním z nejméně studovaných konstrukčních prvku v evropském i celosvětovém měřítku. V porovnání se styčníky nosníků na sloupy a nosníky, kde je k dispozici databáze s tisíci experimentů, je jich u patek popsána jen asi dvě stě. Tradiční pružné návrhové modely pro kotvení patní deskou vedly na tlusté patní desky, viz (Melchers, 1992). Evropský návrhový model v ČSN EN 1993-1-8:2005 vychází z výminky rovnováhy při plastickém rozdělení, viz (Wald a kol., 2008), pevnosti betonu v koncentrovaném tlaku při podrcení ve styčníku, pružném omezení deformace patní desky na betonovém základu a umožňuje určit ohybovou tuhost styčníku. Další výzkum v kotvení sloupů byl zaměřen na sloupy z uzavřených profilů, viz např. (Wald F. a kol., 2000) a (Horová a kol., 2011) a na návrh nových montážně úsporných řešení. Samostatně se řeší problematika kotevních šroubů, která je v evropské metodice popsána stanovením parametrů výrobků pomocí jejich zkoušením ETAG 001 a pomocí poznatků o jejich modelování, viz např. (Eligehausen, 2006) a (Karmazínová 2006).
V letech 2007 – 2011 bylo v rámci evropského projektu RFSR-CT-2007-00.051 InFaSo pod vedením prof. Ulrike Kuhlmanové z Ústavu navrhování konstrukcí na Univerzitě Stuttgartu, viz (Kuhlmann, et al 2011), navrženo pro přípoj ocelového nosníku na sloup/stěnu a pro kotvení sloupu k základovému betonovému bloku konstrukční řešení pomocí zabetonované otevní desky s trny, viz obr. 1.
Kolegové ze Stuttgartu a Coimbry, viz (Henriques et al, 2011), se při práci na projektu orientovali na přípoj nosníku na betonový sloup/stěnu a návrh únosnosti kotevních prostředků v betonu vyztuženého třmínky. Pracovníci z ČVUT v Praze se zaměřili na návrh patek. Kotvení desky do betonu se řeší dlouhými trny s hlavou, kterých se využívá ve spřažených ocelobetonových konstrukcích mostů. Navržené řešení využívá možných tolerancí při osazení kotevní desky, na kterou jsou po jejím zaměření do soustavy sloupu navařeny podle šablony závitové trny. Na závitové trny je osazen sloup, který je vybaven běžnou patní deskou s nadměrnými otvory pro kotevní šrouby – závitové trny. Tolerance v náklonu desky jsou při montáži vyrovnány podložkami a po montáži zálivkou. Konstrukční bylo a je v naší a celosvětové praxi dosud navrhováno na základě interních podnikových experimentů a zkušeností projektantů. Pro návrh metodou komponent podle EN 1993-1-8:2005 byl připraven model, který využívá analytický popis dvou komponent: vytržení závitového trnu z kotevní desky a kotevní deska v tahu.
EXPERIMENTY
Chování patky sloupu bylo experimentálně ověřeno na vzorcích upravených podle obr. 2. Celkem bylo zkoušeno šestnáct zkušebních vzorků, které zahrnuly meze předpokládaných/přípustných geometrických nepřesností při montáži, viz obr. 3.
Při zkoušce, viz obr. 4, se měnilo zatížení zkušebních vzorků, tloušťka podlití a historie zatížení. Vzorky byly namáhány osovou, převážně tahovou, silou s excentricitou a smykovou silou s excentricitou. Devět patek bylo zatěžováno monotónně a sedm cyklicky. Cyklické zatěžování simulovalo namáhání při zemětřesení. Z experimentů byla vyhodnocena únosnost, tuhost a rotační kapacita vzorků, viz tabulka 1.
Tvar porušení vzorků odpovídal předpokladům modelů. Vzorky první skupiny S1 se porušily vytažením trnu z betonu. U vzorků skupin S2 a S3 se plastifikovala místně podepřená kotevní deska. Na zkušebních vzorcích byly měřeny deformace patní desky osmi průhyboměry. Kalibrované podložky s tenzometry umožnily vyhodnotit síly v závitových trnech. Lankovým průhyboměrem byla měřena změna velikosti ramene působící síly během experimentu, viz obr. 5. U vybraných vzorků byla měřena poměrná deformace horního povrchu místně podepřené kotevní desky pomocí nálepkových tenzometrů. Zatěžování vzorků bylo řízeno deformací. Vyvozená síla byla měřena siloměrem vloženým mezi zatěžovací válec a zkušební vzorek. Fotogrammetrické vyhodnocení deformací patních desek poskytlo trojrozměrný model zkušebního vzorku pro danou úroveň namáhání.
Tabulka 1 – Parametry a výsledky zkoušek |
|||||
Vzorek | Tloušťka podlití t [mm] | Historie namáhání | Excentricita síly [mm] | Mezní natočení [rad] | Síla [kN] |
1-S1-30-T | 30 | tah | 1 000 | 0,060 | 84 |
2-S1-30-CTT | 30 | cyklický tah/tlak | 667 | 0,025 | 120 |
3-S1-30-CTT | 30 | cyklický tah/tlak | 667 | 0,048 | 150 |
4-S2-0-TT | 0 | tah | 500 | 0,170 | 85 |
5-S3-0-TT | 0 | tah | 500 | 0,180 | 86 |
6-S1-30-TS | 30 | smyk | 550 | 0,045 | 160 |
7-S2-5-TT | 5 | tah | 350 | 0,200 | 105 |
8-S2-30-CT | 30 | tah | 500 | 0,190 | 93 |
9-S2-30-CTT | 30 | cyklický tah/tlak | 500 | 0,050 | 110 |
10-S2-30-S | 30 | smyk | 550 | 0,083 | 100 |
11-S2-30-CS | 30 | cyklický smyk | 550 | 0,056 | 80 |
12-S3-30-SS | 30 | smyk | 550 | 0,087 | 90 |
13-S3-30-CS | 30 | cyklický smyk | 550 | 0,075 | 75 |
14-S1-30-CS | 30 | cyklický smyk | 550 | 0,036 | 140 |
15-S3-30-CTT | 30 | cyklický tah/tlak | 600 | 0,070 | 100 |
16-S1-5-T | 5 | tah | 750 | 0,120 | 105 |
NÁVRHOVÝ MODEL
Styčníky, přípoje nosníku na sloup a nosník a kotvení patní deskou, se analytickými modely navrhují metodou komponent, viz (Wald a kol, 2008). Předpověď chování, tj. tuhost, únosnost a deformační kapacita, základních komponent je popsána v normě ČSN EN 1993-1-8:2005. Analytické modely některých dalších komponent lze nalézt v literatuře. U kotvení sloupu předem zabetonovanou deskou bylo třeba dále popsat komponentu vytržení vyztuženého kužele betonu a komponentu patní deska s trny. Komponenta vyztuženého kužele betonu byla předmětem práce na TU ve Stuttgartu. Pro vytvoření analytického modelu bylo chování komponenty patní deska s trny analyzováno metodou konečných prvků programem ANSYS 11. Model desky je vytvořen z elementů SHELL181. Pružné podloží bylo simulováno prvky COMBIN39, které podpírají každý uzel desky. Deska je dále držena kloubovými podporami v místě spojovacích trnů. Klouby přenáší tah i smyk a zajišťují prostorovou stabilitu desky. Deska je namáhána osamělými silami v místě trnů se závitem. Materiál se uvažuje s bilineárním pracovním diagramem s vyznačenou mezí kluzu a neomezenou tažností. Obr. 8 ukazuje plastickou deformaci ocelové desky na betonovém podkladě, která je zachycena obr. 3. Je zde patrná plastifikace tlačené oblasti v okolí spojovacích trnů a tažené u závitových trnů. Tenká deska se poruší protlačením trnů. Studie citlivosti numerickou analýzou umožnila ověřit hranice přesnosti analytického modelu komponenty patní deska s trny.
Komponenta vytržení trnu z kotevní desky při zkouškách rozhodovala o únosnosti styčníku. Pro určení únosnosti lze využít mezní únosnost prvku ve smyku
kde plocha ve smyku Av, která je dána tloušťkou desky t a účinnou šířkou desky. Fu je mez pevnosti desky a γM0 dílčí součinitel pro materiál.
Účinnou šířku lze uvažovat jako součet poloviny obvodu oblouku o poloměru trnu dst a tloušťky svaru a:
Popis chování komponenty kotevní deska v tahu je založen na vláknovém působení plechu při jeho velkých deformacích. Kotevní desku lze v pružném stavu modelovat jako náhradním T profil v ohybu a závitový trn v tahu. Po vytvoření plastických kloubů v náhradním T profilu se kotevní deska mezi klouby, tj. mezi trny, deformuje tahem. Předpokládá se, že vodorovná vzdálenost trnů se nemění. Kotevní trny se deformují samostatně. Deformace komponenty od protažení kotevní desky umožní svislou deformaci v místě působení tahové síly, tj. závitového trnu, viz obr. 9.
Návrhový model pro předpověď chování navrženého spoje v kombinaci ohybu s tahem je zobrazen na obr. 10.
V tabulce 2 jsou uvedeny poměry únosností a tuhostí přípoje ve dvou částech křivky síla a deformace pro přípoje typu S2 a S3. První část udává přesnost předpovědi do počátku plastifikace kotevní desky a ve druhá popisuje přesnost modelu po plastifikaci. Porovnání předpovědi chování přípoje s výsledky experimentu č. 10-S2-30-S je zobrazeno na obr. 11.
Tabulka 2 – Porovnání analytického předpovědního modelu s výsledky experimentů | ||||
Experiment | Poměr únosností model/experiment | Poměr tuhostí model/experiment | ||
Plastifikace | Únosnost | Počáteční tuhost | Tečná tuhost | |
6-S1-30-TS | 0,96 | 0,99 | 0,70 | 0,63 |
7-S2-5-TT* | 0,62 | N/A | 0,72 | 0,81 |
9-S2-30-CTT | 0,92 | 0,96 | 0,61 | 0,65 |
10-S2-30-S | 0,92 | 0,90 | 0,73 | 0,66 |
12-S3-30-SS* | 0,99 | N/A | 0,84 | N/A |
14-S1-30-CS* | 0,99 | N/A | 0,68 | N/A |
15-S3-30-CTT | 0,77 | 1,00 | 0,64 | 0,66 |
Poznámka: *Při experimentu nebylo dosaženo celkové únosnosti. |
SHRNUTÍ
V rámci projektu byl připraven nový typ kotvení sloupu do betonového základu pomocí zabetonované kotevní desky s kotevními trny a závitovými trny přivařenými na montáži. Pro návrh přípoje byl vytvořen analytický model metodou komponent, který využívá poznatků současné návrhové normy. Pro model byly připraveny dvě nové komponenty, vytržení trnu z kotevní desky a kotevní deska v tahu.
Příprava příspěvku byla podpořena grantem ČVUT SGS 10/237/OHK1/3T/11.
ZDROJE INFORMACÍ:
- ČSN EN 1993-1-8: 2005, Eurokód 3: Navrhování ocelových konstrukcí, Část 1-8, Navrhování styčníků, ČNI 2005
- Eligehausen R., Mallée R., Silva J. F., Anchorage in Concrete Construction, Ernst and Sohn Verlag, Darmstadt, 2006, ISBN 978-433-01143-0
- ETAG 001, Guideline for european technical approval of metal anchors, for use in concrete, Části 1 až 5 , Brusel, 2002
- Henriques J., Ozbolt A., Kuhlmann U. a kol, Behaviour of steel-to-concrete joints – moment resisting joint of a composite beam to reinforced concrete wall, Steel Construction. 2011, vol. 4, č. 3, v. 161–165. ISSN 1867-0520
- Horová K., Wald F., Sokol Z., Design of Circular Hollow Section Base Plates In: Eurosteel 2011 6th European Conference on Steel and Composite Structures. Brussels: ECCS European Convention for Constructional Steelwork, 2011, vol. 1, p. 249–254 ISBN 978-92-9147-103-4
- Karmazínová M., K problémům metodiky navrhování a experimentálního ověřování ocelových rozpěrných kotev, habilitační práce, Vysoké učení technické v Brně, Fakulta stavební, 2006, 154 s.
- Kuhlmann U. a kol., INFASO, Final report, RFSR-CT-2007-00051, Stuttgart, 2011, 126 s.
- Melchers, R. E., Column-base response under applied moment, J. Construct. Steel Research, č. 23, 1992, s. 127–143
- Wald F., Bouguin V., Sokol Z., Muzeau J. P., Component Method for Base Plate of RHS, Proceedings of the Conference Connections in Steel Structures IV: Steel Connections in the New Millenium, October 22–25, Roanoke 2000, s. IV/8- IV/816
- Wald F., Sokol Z., Steenhouis M. and Jaspart, J.P., Component Method for Steel Column Bases, Heron. 2008, vol. 53, č. 1/2, s. 3–20, ISSN 0046-7316
Anchoring of Column by Slab Embedded in Concrete
The work summarizes the results of the European project, which was focused on the design of anchoring of column by slab embedded in concrete. It is anchored to the foundation of concrete with long spikes with a head. The screw-plug gauges are welded onto it and it is then fitted with the column on site. Height tolerances are compensated with grout. Structural design is based on proven practices of anchored structures. The new design model was prepared using a component according to EN 1993-1-8:2005, which uses an analytical description of two components: the removal of screw-plug gauge from the anchor plate and anchor plate in tension.